Kami menggunakan cookies untuk membuat pengalaman Anda lebih baik. Untuk mematuhi petunjuk e-Pribadi yang baru, kami perlu meminta persetujuan Anda untuk menyetel cookies. Pelajari lebih lanjut .
Mechanical behaviors arising at the contact interface largely depend on its surface topographies, particularly when it comes to rough surfaces. A numerical simulation based on an appropriate characterization of rough surfaces esespecially in terms of three-dimensional can be of great significance when it comes to capturing the deformation patterns of micro-scale contacts. In this paper, a simple and practical scheme is developed to generate 3D rough surfaces and to analyze and evaluate the contact characteristics. Firstly amplitude and spatial statistical characterizations of asperities are introduced to avert the redundancy of topography data caused by traditional measuring methods. A calculation strategy is then proposed to transform varied white noise sequences into the Gaussian and non-Gaussian height sequences, in which operations like translating scaling and spatial reconfiguring are utilized to guarantee that the output first four moments are satisfied with the requirements given in advance.